

�����������	�
��	�
�	�����

�������	����	���	������
�

�

�

�

�

�

�������������
�

�

�������	��
���
�
�	���������	����
��������

�
�

�
�

�
�

�
�

�

����	����	�
�

�	�	�
�������������

����������	�����	���������
�
�
�

�
�

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 ii

�

�

�
�

�����������	�
�����������
��������
������������	
���

���������	��
�

�

������������	��

�

• �������������	����
����������������
	��	����
���	��

• ������
��
	�
���

���	���

�

�
�

�����
������������������
����	�
�

�

�

�

����
����������������

���
��	������������	��	
�����

�

�����������������������������
��������	����	�����
	�����
��	���
���

�

�

�
• ��	�����	
��
��	�����	���������������������
���
�	�������
	����
����
��
��
	�����������

��	���

• ���������
�
�����������������
����

����������
���
	���������	�����
������	��

�
�

�
�������������������
��������
���������������������
������
����������

�

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 1

Abstract

As the web continues to grow at exponential rates, users have continued to increase their

dependence on tools and services that allow some sort of organisation and categorization of the

internet and its resources. Although many may not realise this, it is only evident that the best

search engines and catalog functionality sites in the world are supported by some sort of main

organisational catalog hierarchy that allows the most relevant resources available in the world

to be returned in search queries, or allow even the smallest areas of specialization in fields to

have thousands of relevant sites, documents and resources. As the world is rapidly evolving such

tools are becoming a daily necessity in our busy lifestyle not only for recreational web users but

also for millions of students all over the world who access such resources regularly in order to

retrieve information concerning their units of study.

With the initiative of this electronic dependence on information the new E-learning solution is

quickly becoming a core part of every educational institution and has been viewed as the current

and future solution to speeding up changes in the existing educational systems in order to

provide a much more knowledge-based society.

This thesis project aims to investigate opportunities for the development of an open source web-

based solution to aid the E-Learning community in obtaining such catalog resources within their

community portal. Following careful analysis of the options a dotLRN portlet was designed and

developed using the OpenACS web application framework as a proposed solution to this issue,

this web application achieved its set goals and provided the following:

• A reliable and efficient cataloguing portlet

• A simple corresponding browser interface to access catalog hierarchy

• Support for all ODP data hierarchies and future imports of catalogs

• An original solution to this problem by being the first web application to integrate such

functionality into an E-Learning platform of any kind

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 2

Acknowledgements

Special acknowledgement must go out to my supervisor Dr Rafael Calvo for his great supervising

role, he provided great help and guidance throughout the entire thesis period by dedicating much

of his time to answering my queries and proposing better ideas for the development of the

application.

Secondly I would like to thank Nick Carroll for his help in many of the technical issues

throughout the beginning of the semester, his experience in such issues served well in helping me

get started on my development. Thank you also for Ernie Ghiglione who aided me in the

importing of the catalog onto the University server, this lengthy process consumed some of his

time which is much appreciated. Furthermore, I am especially appreciative and grateful to the

entire OpenACS community for their invaluable support with many of the architecture and

software development issues, a special thanks to community member Neophytos Demetriou who

spent a lot of his time aiding me in the understanding of the technical issues of the RDF files and

the importing process of the catalog, his assistance sparked my understanding of the entire

process and allowed it to be possible.

Thank you for all fellow group members of my thesis group, their online collaboration and

discussions throughout the semester proved to be useful and informative.

I wish to also thank my family for their understanding and continued support throughout this

stressful semester. Finally, I would like to thank god for keeping me patient and focused on the

goals I set out to achieve and allowing me to remain healthy throughout the semester.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 3

Table of Contents

Abstract ...1
Acknowledgements...2
Table of Contents..3
Table of Figures ..6
Introduction...7
Statement of Achievements ..8

CHAPTER 1: OVERVIEW ..9

1.1. OpenACS – A Web Application Framework ..10
1.2. The dotLRN Design and Architecture...12
1.3. Portlet Architecture..15
1.4. The ODP Directory..16
1.5. Browser System Introduction ..17
1.6. Competitive Analysis...18
1.7. Historical Considerations...19

CHAPTER 2: REQUIREMENTS..20

2.1. System Requirements ..21
2.1.1. Functional Requirements..21
2.1.2. Non Functional Requirements..22
2.1.3. Additional Functionalities ..24

2.2. Use Cases and User Scenarios ...25
2.2.1. Actors ...25
2.2.2. Use Case Scenarios ..26

CHAPTER 3: DESIGN..31

3.1. System Design Overview...32
3.1.1. Catalog Portlet System Design Overview ..32
3.1.2. Catalog Portlet System Layout Overview ..34
3.1.3. Baseline Architecture ...35

3.2. Data Model Discussion..36
3.2.1. Previous Catalog System Data Model..37
3.2.2. Implemented Browser System Data Model..40
3.2.3. Data Model Comparisons ...43

3.3. User Interface layout and Design ..45
3.3.1. Catalog Browser Package UI ...45

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 4

3.3.2. Catalog Portlet Interface...49

CHAPTER 4: IMPLEMENTATION...50

4.1. The Importing of ODP into PostGRESQL ..51
4.1.1. RDF and the ODP Import files...51
4.1.2. Parsing the RDF Files and Tags ...53

4.2. The OpenACS Browser Package...56
4.2.1. SQL Directory ..57
4.2.2. TCL Directory ..57
4.2.3. WWW Directory ..58

4.3. The dotLRN Browser Portlet Package ..59
4.4. Browser System Operation ..59

4.4.1. Browser Database Interactions ...59
4.4.2. Browser Hierarchy listing ..60
4.4.3. The Browser Permissions System ..62
4.4.4. Adding links to the portlet list ..62
4.4.5. Deleting Links ..63
4.4.6. Adding Comments to Links ...63
4.4.7. Editing Links ..63
4.4.8. Searching the Catalog...64
4.4.9. Portlet Accessibility ...65

CHAPTER 5: RESULTS...67

5.1. Final User Interface ...68
5.1.1. Hierarchy Listing..70
5.1.2. Category Description..73
5.1.3. Search Engine...74
5.1.4. Portlet List Navigation Bar...75

5.2. Portlet Interface and Appearance...76
5.2.1. Student Portlet Display...77
5.2.2. Staff Portlet Display ...79

CHAPTER 6: DISCUSSION...82

6.1. System Evaluation ...83
6.2. Future Work...84

Conclusion...85

References ...86

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 5

APPENDIX A: ACRONYMS ...88

APPENDIX B: DEVELOPER DOCS ..90

B1. Code File Hierarchy ...91
B2. Installation Instructions..94

APPENDIX C: INTERACTIVE CD..97

C1. CD Contents ...98

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 6

Table of Figures

Figure 1: The OpenACS Architecture [1] ..11

Figure 2: OACS and dotLRN Architectures [3]...13

Figure 3: An overview of the catalog portlet System Layout ..34

Figure 4: The entity-relationship diagram for the bibliographic catalog data model [8]...............39

Figure 5: The entity-relationship diagram for the browser system ..42

Figure 6: Typical webpage layout corresponding to the OpenACS template system....................46

Figure 7: Real life example of an OpenACS website and User Interface......................................46

Figure 8: DMOZ User Interface of web catalog ..47

Figure 9: The original proposed browser package UI design ..48

Figure 10: The original proposed browser portlet UI design for dotLRN49

Figure 11: A fragment of the structure.rdf file listing some of the “Top” categories.52

Figure 12: A fragment of the content.rdf file listing some URL’s for the Home category............52

Figure 13: Structure.rdf tag list ..53

Figure 14: Content.rdf tag list ..55

Figure 15: OACS Package Structure..56

Figure 16: Hierarchy of the catalog output onto the screen ...61

Figure 17: Browser package home page for staff (screenshot) ..68

Figure 18: Browser hierarchy listing of the letterbar subcategory (screenshot)70

Figure 19: Browser hierarchy listing 2 (screenshot) ..71

Figure 20: Browser hierarchy listing 3 (screenshot) ..72

Figure 21: Category Description (screenshot) ...73

Figure 22: Browser search (screenshot) ...74

Figure 23: Portlet List Contents (screenshot)...75

Figure 24: Student Portlet View (screenshot) ..77

Figure 25: Student redirect to browser package (screenshot) ..78

Figure 26: Staff Portlet View (screenshot)...79

Figure 27: Portlet Administration page (screenshot) ...80

Figure 28: Minimised Portlet Display (screenshot) ...81

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 7

Introduction

The prospering of current available web resources has constituted many projects of its own,

some of which have extended for many years and till this day are still in operation. Such an

example is the well known Open Directory Project (ODP) allowing net citizens or “editors” to

register to a central website and help in “the organisation of the internet”. The ODP data is

indisputably the most powerful catalog available on the web today, its information forms the

backbone of some of the best online tools such as Google search and Yahoo categories by

providing them with the most updated data of web resources. However, this powerful tool

has not been used to its full potential, it has not been provided for the millions of students

throughout university’s and schools via their everyday E-learning platform, which is also

proving to be the best strategy for convenience in education.

In the last few years, the increase of such electronic applications and platforms in our

everyday life has profoundly and irreversibly changed our views on the development of

solutions to aid this process of E-learning. Such software cannot be based on the traditional

static E-learning platform but rather must be developed on open architectures that

continuously change and evolve to accommodate new requirements and components of the

future. Hence the decision to allow the integration of this powerful catalog functionality into

OpenACS, a prospering open architecture with its corresponding open source E-learning

platform “dotLRN” which is already being implemented across some of the best university’s

around the world, proving that it is here to stay.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 8

Statement of Achievements

According to my thesis study, the following achievements were made:

In terms of background and new concepts learnt:

• I learnt and understood the OpenACS Framework and many of its operations.

• I learnt and understood the dotLRN platform and its operations.

• I learnt in depth about RDF file formats and how they are implemented.

• I learnt how to program in TCL and plpgsql according to the OpenACS architecture.

• Increased my experience with PostgreSQL and the SQL query language.

In terms of the main catalog system development:

• I allowed the import of current/future ODP catalogs into the PostgreSQL database.

• I designed the data model to hold the catalog.

• Analysed, designed and developed an OpenACS package

• Analysed, designed and developed a dotLRN portlet package

• Allowed the exact depiction of catalog hierarchy listing according to professional

ongoing projects such as DMOZ.

• Created a simple and powerful user interface that catered for experienced and non

experienced catalog users and allowed browsing and searching of the catalog.

• Allowed the addition of resource links from the catalog into the dotLRN portlet without

burdening the user of any technical tasks.

• Provided a permission system so as to customize the functionality available

according to certain rights of adding and removing resources from the portlet.

• Provided add/delete/edit/comment functionality on links added to the portlet.

Abbas Chebli Date Rafael Calvo Date

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 9

�

������	���

���	���
�

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 10

1.1. OpenACS – A Web Application Framework

The OpenACS application framework is an open source system that was initiated by the

ArsDigita Corporation. It is based on the former Arsdigita Community System (ACS) that

was first initiated in 1997 by Phillip Greenspun and others as a form of solution to the

common problem of “creating scalable web community systems” as well as reaching a

compromising level of software reuse across website developments in communities that

have similar business requirements [1].

Today, with almost 7000 community members the prospering OpenACS has been widely

recognized as an advanced toolkit used for building scalable, community-oriented web

applications by many software developers and organisations from all over the world. What

initially started as a single project has matured and is now responsible for the creation and

co-ordination of many online community projects of its own.

In general, an application framework can be defined as a “reusable, ‘semi-complete’

application that can be specialised to produce custom applications“[1], which essentially

provides software developers with a number of benefits consisting of modularity, reusability,

extensibility and inversion of control. The term “web application framework” relates to these

framework architectures that are designed specifically to meet the needs of a particular web

application domain [1].

OpenACS is a “web application framework” which enables web developers to “rapidly

implement modular and extensible web applications, achieving significant levels of software

reuse by utilizing the features of the core OACS packages” [1]. It is mainly implemented via

TCL, as a group of applications that interact with AOLServer and a RDBMS (so far only

PostgreSQL an Oracle) and can be divided into a number of core packages, services and

applications, this is outlined in figure 1.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 11

Figure 1: The OpenACS Architecture [1]

The main base layer labeled “core packages” consists of the core packages required for

OACS to function, they include a kernel, package management, administration utilities

(users, sitemap and other common business objects), a template system that cleanly

separates the business logic from the presentation layer, and a backend mail and

messaging system. Services, such as the events package are implementations of reusable

logic that is not application dependant and does not require a user interface. Application

packages are used to interact with the users, they usually coincide with the service

packages to provide the functionality for the users. These packages have a user interface

and their code is clearly divided into application and presentation logic (discussed in more

detail further on in the document) [1].

Each service and application within the architecture requires a database data model that will

be integrated into the framework. Through this integration we enable reusability and a

number of functionalities. To help increase the reusability the framework has been designed

Core Packages

Services

OACS

Web Services

Database

App1 App2

Web Server

User

- Template
- Logic
- Library
- Docs
- Admin UI

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 12

to have an Object Oriented (OO) architecture although, since the RDBMS does not

implement OO functionalities, they must be added ad-hoc by the framework. The OACS

objects have their attributes stored in tables and a set of functions/methods defined as

PL/SQL packages. These packages hold the procedures that make the programming

interface for the data model [1].

The essential idea behind this OO architecture is that each piece of information that may be

reusable should be an object. Since RDBMS are inherently not OO, data structures are

integrated into the framework by being added to a table that keeps track of every OACS

object. Another table defines the standard attributes stored on every object, including a

system wide unique ID, an object type and auditing columns. The concept of OACS object

types is equivalent to classes in OO programming languages (such as Java), regrettably

since we are using a RDBMS additional work must be performed [1].

1.2. The dotLRN Design and Architecture

DotLRN is one of the major projects under the development of the OACS community, it is an

open source solution that consists of an enterprise-class suite of web applications with an

accompanying portal framework for supporting course management, online communities

and collaboration [2]. This platform was originally built by Arsdigita for the Sloan School of

management at MIT where it was based on the ArsDigita Community (ACS). This learning

management system was initially called ACES until two years later where it was released

with a new architecture and under the name of “dotLRN” [3].

Today dotLRN is used worldwide in places such as MIT (U.S.), University of Heidelberg

(Germany), University of Cambridge (U.K.), University of Bergen (Norway), University of

Sydney (Australia), Universidad Galileo (Guatemala), and University of Copenhagen

(Denmark). Its popularity is due not only to the functionality it provides to users but also to its

great architectural design that is built upon the existing OpenACS framework. By adhering to

this design, the inheritance of all OACS functionalities, modularity and features by dotLRN

was made possible as the underlying layers of the dotLRN platform refer back to the initial

OACS architecture which consists of the ACS-core packages that provide an API for

common functionality between packages and services, this is described in figure 2 below.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 13

Figure 2: OACS and dotLRN Architectures [3]

From the diagram we note that the OACS core packages, services and Applications layers

are exactly as they were described in figure 1, that is they constitute the same functionality

that they perform within the OACS architecture. The new layers visible in this diagram

consist of:

dotLRN Core: This refers to the main packages that make up the dotLRN library, they

provide an API that all other packages in the dotLRN architecture follow and use, you will

also note that this layer lays above the main OpenACS core packages base layer which is

the main API for OACS development, hence its reason for inheriting all of its functionality

and properties [3].

OACS Core Packages

Services

Web Services

Database

Applications dotLRN Applet

Web Server

User

dotLRN core Portals

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 14

Portals: A Portal is a user interface that presents information collected from many sources

or packages within the architecture to the end user. Portals can belong to either

groups/communities or a single user, they will be further discussed in the next section to

help indicate their importance in the design of the proposed system [4].

dotLRN applet: A dotLRN applet is simply the “glue” that responds to specific requests. Any

dotLRN package is an applet according to the dotLRN platform, which essentially means

that an applet is some sort of “small application” that must provide a certain API which

allows some basic functionality of the dotLRN platform. What is meant here is the ability of

this API to allow the dotLRN core to dispatch calls to each applet when certain events

happen. In particular there are 4 types of events that the applet must be able to respond to

these are [5]:

• Addition of this applet to a community

• Removal of this applet from a community

• User is added to a community that has enabled this applet

• User is removed from a community that has enabled this applet

There are also other main architectural aspects of dotLRN that are not illustrated in figure 2

since they are more related to the way groups/users and content is managed within a portal

these consist of:

DotLRN communities: These dotLRN communities were created in order to follow the

realistic way people learn within a physical institution, that is through the courses they take

and the communities they interact in. Each community is liable to its own templates,

applications, groups, permissions and much more. Multiple communities may be setup

under different sub-sites, as well as each community can be organised into “classes” or

“clubs” both of which provide different collaboration tools, roles for users and default

templates [3].

Portlets: A portlet is basically the interface of the applet, it is a “view” of a package or piece

of content visible within a certain group or community’s portal, one such example is the

calendar portlet which is presented as a small “window” in the main dotLRN community

portal page, a user can add and remove selected portlets from the page to customize it to

his needs and liking [3].

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 15

The most significant point to realize about the dotLRN platform is that it is there to increase

the amount of learning for students while maintaining a minimal workload for the teachers by

allowing or encouraging students to learn from each other and depend less on their

teachers. This includes online collaboration by students in forums, chat, file sharing and

many other activities all joined together in one main “online community” which is used to

assist the traditional management of an educational course or subject being held at an

educational institute.

1.3. Portlet Architecture

From the previous section’s discussion the architecture of OACS and dotLRN shall be fairly

clear, although one main point that was not elaborated on is why this portal architecture was

chosen as a solution to implement the dotLRN functionality?

From the origin of portals back in 1999 when the developer Aurelius Prozhacka built the first

portal system, it was realized that this architecture helped gather information from different

places and then organise or present this data in a customized way to allow usability by

different users or groups of users. During this time the portal system was designed for a web

site to collect data from several departmental servers and then present this data to different

classes of users ranging from students to professors.

Today after the improvements on the portal system by Arsdigita (and then OACS) who

basically made it a standard platform for the education solution, the portal system has

become the best architecture for web based E-learning solution since it solves two of the

major problems for this environment. The first is being able to aggregate information or

content from the organisations internal and external data sources into the one main portal,

the second is allowing this content to be customized and personalized as well as laid out

accordingly to the group or personal users.

This new Portal architecture is used in dotLRN to allow the mentioned dotLRN applets from

figure 2 to provide the users of their portal with an interface to a certain package. These

dotLRN applets can just simply add themselves to an existing portal page via a portlet, since

they are independent of this dotLRN-architecture in the sense that when they are added to a

portal, but the portlet content usually relies on dotLRN functionality [5].

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 16

1.4. The ODP Directory

Those who have heard of the Open Directory Project (ODP) can only appreciate what it has

contributed to modern website services and tools, as it has been the largest , most

comprehensive human-edited directory of the Web. Constructed and maintained by a global

community of volunteer editors, ODP is following the footsteps of the Oxford dictionary,

which became the definitive word on words through efforts of volunteers, although its aim is

to become the definitive catalog of the web [6].

With over 3.8 million websites categorised in one of 460 000 categories ODP has provided a

means for the internet to organise itself, by allowing each net-citizen to contribute and select

a small portion of the web to categorise, today the number of contributors is almost 59 000

and still growing, each of which remove any bad or useless links and categorise the best

ones from the category they are given. Being 100 % free the ODP has been become a

standard for many major websites all over the world. Famous names such as Google,

Netscape search, AOL search, Lycos, Hotbot and hundreds more operate on the ODP to

increase their search speeds as well as quality for their services. Although, it must not be

mistaken, the ODP is a web directory not a search engine, that is its main aim is to list and

categorise web sites in one of its categories that seem best suited – and it is through this

that allows these search engines to improve their retrieval speed of results [6].

The ODP data or catalog is made available via files called RDF (Resource Description

Framework) “dumps” which is basically an XML format, that can be parsed and inserted into

a selected Database and data model (all of which are discussed further later in the

document).

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 17

1.5. Browser System Introduction

From the previous two sections, two main points must be stressed. The first being the

importance of the new portal architecture to the E-learning platform that is growing to be one

of the largest in the world-dotLRN. The second is realising the capabilities of such a tool as

the ODP catalog and how it can be used to provide many services for web citizens. These

are the two main pivotal points that the proposed catalog browser system is based on.

Please note: The proposed system developed in this thesis named “catalog browser system for the ODP

project” will be referred to as the “browser system” throughout the document for the sake of brevity.

The browser system is to combine these two factors of great web sources being classified

and categorised and the new E-learning architecture with its portal design to provide one

tool for dotLRN communities that will allow catalog functionality to be used in an E-learning

environment. This refers to certain relevant resources being made available mainly to

students of a course by their lecturer/staff who would have added a personalized list of

resources they recommend according to certain assessments/projects within the school

term.

The browser system consists of two main components, the first of which is a general OACS

package that will allow the ODP catalog (both structure and content) to be imported and

viewed through a great, easy to use UI which will support a personalized list of resources to

be selected. The second is to provide a dotLRN portlet package that can display the

personalized list within a portlet for a certain course/community portal to its students who

can access these links/categories directly from their personalized community portal.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 18

1.6. Competitive Analysis

In terms of competitive analysis, although there are hundreds of sites all over the world that

provide catalog browsing functionality with the ODP data, not one of them have integrated it

into an E-learning system/platform or any kind of E-learning website, hence this thesis study

was completely original, in fact this was one of the main reasons for my supervisor Dr

Rafael to propose this great idea as a thesis project. Hence to find actual competitors for

any similar work is impossible, rather I have chosen to discuss one of the main prospering

catalog software programs on the market currently, named “Senga” to give the reader an

indication of how the browser package can be expanded in future work to include such

functionalities.

Found at www.senga.org the Senga catalog is a perl program that implements a MYSQL

database and allows the user to create, maintain and display directories, similar to the ones

available at www.Yahoo.com. The project is based on the main idea that creating a catalog

is mainly a matter of organizing objects in a structured tree, where each object is a record in

the table of the database [7]. Senga catalog currently has many features and functionalities

that it provides for its users, some of its main characteristics are listed below [7]:

Senga Characteristics

• Display structured trees of resources.
• Display chronologically ordered resources and associated calendar.
• Display alphabetical indexes of resources.
• Allow full text search in the resources and the category names.
• Powerful HTML based administration of catalogs.
• On-Line editing of resource records.
• Handle an arbitrary number of catalogs.
• High performances using mod_perl and Apache.
• Easy customization of the user view using HTML template files.
• It is possible to define more than one view of the same catalog.
• Load and unload a thematic catalog in XML.
• Create an HTML dump of a structured tree to publish a static version.
• 100 % free – Open source under GNU license

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 19

Senga is an ongoing project, that has been in operation for years, hence in terms of catalog

functionality it cannot be compared to the browser system, but rather can be used as a

guide for future work to include all these functionalities into the browser system.

1.7. Historical Considerations

In 2002 two students by the name of Mitsunori Habadera and Roger To from the University

of Sydney worked on a catalog package for OACS. This package named “Collaborative

Bibliographic Catalog” aimed to provide an online bibliographic system, that would allow

users to access the catalog and update it with their literature of interest. The system allowed

resources to be gathered and organised into a central database of references that could be

edited and commented upon. It supported a type of XML importing , although this was very

limited as it only could insert XML documents following an exact format that suited their data

structure, and this format was not a well know standard such as RDF.

Due to the lack of time available they did not complete one of their extra functionalities,

which was to import the ODP catalog into their database since this would have introduced a

totally new design of the importing functionality, as the ODP RDF structure had a tag

structure of its own, consisting of over 30 tags – each of which were inter-related to other

category, subcategory and link tags.

The students’ main aim was dedicated to creating a catalog that could add, delete, edit

resources as well as provide search engine functionality for the existing data in the database

in which they succeeded. Their package did not integrate into any part of dotLRN to provide

the users with another additional E-learning opportunity, it was solely based on being an

OACS package.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 20

�
�

������	���

	����	�������

�

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 21

2.1. System Requirements

Here we shall discuss the expected requirements of the browser system (both browser

package and portlet) which revolve around two main types, the first being functional

requirements which represent the requirements that provide tangible services for the users,

the second being the non functional requirements which are either constraints or expected

non tangible functionalities that are imposed on the system by the user. The complete list of

functionalities is mentioned here although due to time restrictions some of the functionalities

may not be implemented in the final browser system.

2.1.1. Functional Requirements

• 1.0: The ODP Catalog

1.1: Import structure of ODP catalog into PostgreSQL.

1.2: Import content of ODP catalog into PostgreSQL.

1.3: Provide interface for ODP data browsing.

1.4. Support generic RDF import of any future ODP catalog

• 2.0: Browser package users (Staff and students)

2.1: User must have the ability to browse the catalog.

2.1.1: User has the ability to browse categories.

2.1.2: User has the ability to browse sub-categories.

2.1.3: User has the ability to browse links.

2.2: User has the ability to acquire a description of the current browsing category.

2.3: User has the ability to visit a selected link from the category.

• 3.0: Managing the portlet list of the Browser package (Staff only)

3.1: Staff member can add links to a personal portlet list.

 3.1.1: Staff member has the ability to add a single link from the catalog.

3.1.2: Staff member has the ability to add a single subcategory from the catalog.

 3.1.3: Staff member can add a custom link.

3.2: Staff member has the ability to delete links from the portlet list.

 3.3: Staff member has the ability to edit links from the portlet list.

 3.4: Staff member has the ability to view current links in the portlet list.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 22

• 4.0: Browser Portlet package Operations

4.1: Browser Portlet is able to be added to a community portal.

4.2: Browser Portlet is able to be removed from a community portal.

4.3: Browser Portlet is able to be minimized within a community portal.

4.4: Browser Portlet is able to be maximized within a community portal.

• 5.0: Browser portlet Users (Staff and Students)

5.1: User has the ability to view current links and their comments in the portlet window.

5.2: User has the ability to view current categories in the portlet window.

5.3: User has the ability to access each link within the portlet.

5.4: User has the ability to search the ODP catalog from the portlet window.

• 6.0: Browser System Administration

6.1: The administrator has the ability to add and remove the portlet from a community

6.2: The administrator has the ability to grant administration rights to staff members, so

as to allow the modifying of the portlet window.

6.3: The administrator has the ability to view any part of the catalog

2.1.2. Non Functional Requirements

• 7.0: Usability

7.1: The browser package and portlet must provide an easy to use user interface.

7.2: All catalog hierarchy is to be clearly presented on the browse screen of the interface.

7.3: The catalog browser interface must clearly identify the tag structure of the ODP RDF

tags.

7.4: The portlet window must simply allow the clear view of the currently added links and

their comments.

• 8.0: Portability

8.1: The browser package must be able to be viewed in all browsers under all OS

platforms such as Internet explorer for windows and Mozilla and Netscape for Linux.

• 9.0: Reusability

9.1: The browser package must be easily mounted and installed into OpenACS/dotLRN.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 23

9.2: The browser package must be easily removed from OpenACS/dotLRN.

9.3: The browser system with both packages must be made freely available to all

community members to view, modify and improve since it is an open source system.

• 10.0: Availability

10.1: The Browser system must be available and in operation most of the time with

minimum downtime for all OpenACS/dotLRN Users after being installed and mounted.

• 11.0: Reliability

11.1: The Browser system must provide all users’ requests at all times as well as serve

users performed tasks on the portlet list (adding/deleting/modifying).

• 12.0: Security

12.1: The Browser system must assure that only appropriate users with certain

permissions can add links/resources to the dotLRN portlet list.

• 13.0: Scalability

13.1: The Browser system must be able to handle the large ODP data and future ODP

catalog imports, as well as handle a large demand of users without affecting any

performance aspects of the system.

• 14.0: Standards Compliance

14.1: The Browser package must be standard compliant to OpenACS architecture

framework and engineering standards.

14.2: The DotLRN portlet package must be standard compliant to DotLRN architecture

framework and engineering standards.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 24

2.1.3. Additional Functionalities

Apart from the main functionalities that were named above, there are also some other extra

functionalities that can and may be added to provide extra operations for the users of the

Browser system. Please note, the number of these implemented is due to the amount of

spare time available , any other functionalities that are not completed are also listed to give

some indication of future work opportunities.

• 15.0: User has the ability to search the ODP catalog with an entered query.

15.1: User has the ability to search with the “Title” field. [Implemented]

15.2: User has the ability to search with the “Category” field. [Implemented]

15.3: User has the ability to search with the “All” field. [Implemented]

15.4: User has the ability to search with the “urls” field. [Implemented]

15.5: User has the ability to search from the portlet window. [Implemented]

15.6: Implement advanced searching algorithms and techniques.

• 16.0: User has the ability to comment on links

16.1: Staff member has the ability to comment on current links in the portlet list.

[Implemented]

• 17.0: Browser System Notifies Users of changes

17.1: Browser system emails student members of the community (or appropriate course)

to inform of changes made to portlet links.

• 18.0 Browser system management of editors

18.1 Allow editors to register.

18.2 Allow editors to help categorise sections of chosen categories.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 25

2.2. Use Cases and User Scenarios

2.2.1. Actors

Within the proposed browser system, many actors were involved that interacted with certain

functionalities according to the permissions they have been granted by the administrator.

The main actors for the system can be stated as follows:

• Browser System Administrator – At the top of the user hierarchy, the

administrator is the one responsible for the typical administration duties of an

OpenACS package. He has the right to edit and grant rights to specific

groups/users within the community that the portlet is mounted. The Administrator

initially manages the applet configuration of the community to include the browser

portlet and then from there can make it viewable to certain groups/users within

that community.

• Catalog Staff – Usually depicted by a staff member, or a senior tutor of a certain

course in the dotLRN community, catalog staff members will have total control of

the viewable contents of their particular community’s portlet, by being able to

modify the portlet’s list in the main browser package through the user interface.

These members would need to have been granted administration rights on the

portlet by the Administrator for their particular community/group.

• Registered Portal Students – This group of actors mainly concerns the

registered users of the dotLRN portal/community containing the portlet, for

simplicity we will assume that in most cases these are registered students of a

certain course. Their main role is to be able to view the links added to the portlet

by the staff as well as access these links directly from the portlet window.

• Browser System – This represents the system behind the scenes of the browser

package that controls the architectural protocols and communication that exists

between the browser and the dotLRN portlet to apply changes (also includes

database which stores the portlet list).

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 26

• Unregistered Users – This group consists of individual users of the browser

system that have installed the browser catalog package, and use it for individual

purposes. These group members cannot access the dotLRN portlet, they simply

use the browser package as a normal OpenACS package.

2.2.2. Use Case Scenarios

Some of the most common use case scenarios are outlined below to give a general idea of

the functionalities and the exact procedures that must be followed in order to achieve the

required goals of the use case.

USE CASE 1 Browse the catalog for entries
Goal In Context For the user to manually browse through the catalog for links or categories.
Preconditions The user is an existing OACS member and is logged in to OACS.

Success End Condition User can view all categories, sub-categories and links of the ODP catalog
hierarchy.

Failed End Condition User cannot view the full contents of the catalog hierarchy of the ODP
data.

Actors Unregistered Users, Staff , Registered students, administrator, system
Description Step Action
 1 The use case starts when the user visits the /browser sub-

directory on his/her server.
 2 The system loads the index page with top ODP categories listed.

 3 User clicks on categories recursively until the required
subcategory/link is found.

 4 The system loads all the sub-categories or links for the selected
category/link and the use case ends.

Extensions Step Branching Action

 2a
If the index page does not load, an OACS error page is generated
due to improper installation of the package. User must check the
installation details.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 27

USE CASE 2 Add link from the catalog to the portlet list
Goal In Context For the user to add a link to the portlet list.

Preconditions - The user is an existing dotLRN staff member of a certain community.
- The portlet has been mounted into this user’s community.

Success End Condition User successfully adds a link to the portlet list via the browser package UI
and gets a confirmation.

Failed End Condition User does not successfully add the selected link to the portlet list, and does
not get the confirmation.

Actors Staff , administrator, system
Description Step Action
 1 The use case starts when the user browses into the correct sub-

category for the link.
 2 The user clicks “add” beside the required category/link.
 3 The system checks if the link already exists in the portlet list.

 4 The system adds the link to the portlet list.

 5 The system loads a page confirming the addition of the selected
link to the list and the use case ends.

Extensions Step Branching Action
 3a If the link is already in the list, a warning page is loaded

indicating that this link has already been added.

USE CASE 3 View current portlet list links
Goal In Context For the user to view the portlet list contents using the browser package UI

Preconditions - The user is an existing dotLRN staff member of a certain community.
- The portlet has been mounted into this user’s community.

Success End Condition User successfully views the current links in the portlet list.
Failed End Condition User does not successfully view the portlet list contents.
Actors Staff , administrator, system
Description Step Action
 1 The use case starts when the user clicks on the “My current urls”

link under the “My portlet list” menu.
 2 The system checks the current links in the list.

 3 The system loads a page with the links listed in a table, each of
which has a title and comment field.

 4 The user views this list and the use case ends.

Extensions Step Branching Action
 2a If the list is empty a message will appear, making it clear that no

links have been added to the portlet list.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 28

USE CASE 4 Comment on current portlet links
Goal In Context For the user to add a comment on a link in the portlet list.

Preconditions - The user is an existing dotLRN staff member of a certain community.
- The portlet has been mounted into this user’s community.

Success End Condition Comment made is viewable in the portlet list under the selected link.
Failed End Condition Comment is not added correctly for the selected link of the portlet list.
Actors Staff , administrator, system
Description Step Action
 1 The use case starts when the user clicks on the “edit list” link under

the “My portlet list” taskbar.
 2 The system loads the current link information that is in the list.

 3 The user selects the link to add a comment to and clicks on “edit”
link beside the link title.

 4 The system loads the current title and comment fields of this link in
a form that can be edited.

 5 The user types in a comment into the given form space, under the
“comment” field.

 6 The user clicks “add to my personal list” to confirm entry.

 7 The system updates the link information and redirects the user back
to the listing of the portlet list contents.

Extensions Step Branching Action
 2a If the list is empty a message will appear, making it clear that no

links have been added to the portlet list.

USE CASE 5 Delete an entry from the portlet link list
Goal In Context For the user to delete a link from the portlet list.

Preconditions The user list must contain at least one link, i.e. it can not be empty.

Success End Condition Selected link is successfully deleted from the portlet list.

Failed End Condition Selected link is not removed from the portlet list, no modifications are
made to the list.

Actors Staff , administrator, system
Description Step Action
 1 The use case starts when the user clicks on the “edit list” link under

the “My portlet list” taskbar.
 2 The system loads the current link information that is in the list.
 3 The user selects the link to delete and clicks on “delete” beside it.
 4 The system loads a confirmation page asking to confirm the delete.
 5 The user clicks on the “confirm deletion” button.

 6 The system updates the list and redirects to the list page.
Extensions Step Branching Action
 5a The user cancels the confirmation and the link is not deleted.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 29

USE CASE 6 Search the catalog for entries.
Goal In Context For the user to search for entries in the catalog.
Preconditions The use must entry a query string in the search form.
Success End Condition Matches are listed, matching the entered query.
Failed End Condition No matches are listed for the query entered.
Actors Catalog Staff ,Students, unregistered users, administrator, system
Description Step Action
 1 The use case starts when the user is at the main page.

 2 The user enters a query within the form text box under “Search
Open Directory”.

 3 The user clicks on the drop down menu and selects “all”.

 4 The user clicks on the “Go” button.

 5 The system returns the matches for the entered query and the use
case ends.

Extensions Step Branching Action
 3a The user selects “title” to search by title.

 3b The user selects “topic” to search by topic.

 3c The user selects “urls” to search by url and url description.

 5a If there are no matches in the catalog, the system generates a “sorry,
no results found” page and the use case ends.

USE CASE 7 View category description
Goal In Context For the user to view the description of the current category.

Preconditions The user must have clicked into a subcategory at least one level deep into
the “Top” categories.

Success End Condition Current category description is displayed successfully.
Failed End Condition Category description does not get displayed.
Actors Catalog Staff ,Students, unregistered users, administrator, system
Description Step Action
 1 The use case starts when the user is at the main page.

 2 The clicks into a current category, until he/she is in the current
category listing.

 3 The user clicks on the “click here for category description” link.
 4 The system loads the category description for that category.
 5 The user views the description and the use case ends.
Extensions Step Branching Action
 4a If the current category has no description, the system prints out

“sorry no description available for this category”.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 30

USE CASE 8 Access the links from the portlet window
Goal In Context To simply access the portlet links from the portal page.

Preconditions
- The user must be logged in to dotLRN
- The portlet must be installed in his community and added to his
personalized page.

Success End Condition The user can access and view all the links added into the portlet list.
Failed End Condition The user cannot access the portlet or view the links.
Actors Catalog Staff ,Registered students, administrator, system
Description Step Action
 1 The use case starts when the user clicks on his community link off

the main dotLRN page.
 2 The system then directs the user to the “Community Home” page

within the selected community portal.
 3 The user scrolls down the page and views the portlet.
 4 The user then clicks on a link to access that category/URL.

 5 The system redirects the user to the correct category within the
catalog and the use case ends.

Extensions Step Branching Action
 5a If the selected link is a URL, the user is directed to that webpage.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 31

�

�

������	���

������ �

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 32

3.1. System Design Overview

3.1.1. Catalog Portlet System Design Overview

The dependence on web resources within educational institutes is increasing day by day

where the majority of course materials are provided online as well as the idea of online

tutorials or quizzes being held for the students. Some institutes have reached the level of

developing full online courses where the lectures and tutorials are held purely online in order

to provide convenience for students from home. This expansion that we are talking about

here is what “E-learning” is all about, and for that matter, what dotLRN is based on and

trying to improve.

The browser system was designed to increase the functionality of the dotLRN platform by

providing access to a central repository of the ODP catalog from the dotLRN portal where

staff and students can utilise this data as an online resource for coursework as well as a

form of collaboration to increase E-learning within a course or a unit of study in a

school/university.

In order to provide such functionality the system had to be designed in such a way so as to

conceal the structure complexities of such a large catalog and only portray what the user

wanted to see, or what the user could use as a resource. Hence, users of the browser

system can now without having any prior knowledge of internal system components use a

web server to access this web based application with a simple, easy to use User Interface

very similar to many directory project websites available such as Yahoo and DMOZ.

Furthermore, staff members of the online E-learning community can not only browse the

catalog but can also personalize links that are viewable for their students by adding them

and their corresponding comments to a portlet list that will be displayed in the browser

portlet. All of this is achieved without any html coding of any kind by the staff member or any

form of technical burden which was the case to insert web resources into dotLRN prior to

the browser system.

From here, once the browser portlet is accessed the appropriate database information is

read by the portlet to display the current portlet list which will become accessible by the

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 33

students or other portal members. If the link in the portlet is a http link then the student will

be automatically redirected to that web page upon clicking on the link. On the other hand, if

the link in the portlet is a category within the ODP data the student will be directed to that

particular category listing within the browser package (UI).

Although it may appear that by redirecting the user back into the browser portlet we are

opening paths for students to access and misuse permissions to add links to the portlet, it is

quite the opposite as one of the great advantages of the OpenACS framework is its

permissions system which allows the personalization of the user interface of the package

according to the set permissions for the current user. Thus, staff admin operations are

automatically hidden from the user interface if the user is a student (or does not have admin

rights).

Apart from the advantage of reusability and extensibility of such framework aspects there

was another contributing factor that pushed towards an open source solution for the system,

the cost. Due to the large costs of many existing E-learning platforms, the browser system

was designed on dotLRN and OACS in order to provide a free solution to the problem of

adding web resources to an E-learning portal. This would allow a more significant number of

institutes to implement this new system under an existing open source platform without any

financial hurdles that can range up to hundreds of thousands of dollars per institute.

As mentioned in Chapter 1 the OACS platform is based on 3 main software packages, they

are AOLServer, PostgreSQL (a RDBMS) and TCL. The first of which is the web/application

server that will host the browser system and process requests from the user’s web browser

before they are passed into the system to perform the required transaction. The second

“PostgreSQL” is what was used to access and maintain the ODP data which was stored with

an appropriate data model into this database. The last “TCL” is the scripting language that

implements all the functions of the browser system with its own method of handling

database calls and html output (discussed further in chapter 4).

This system layout is shown in figure 2 below alongside all of the necessary entities involved

and the way in which they communicate with each other.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 34

Language
SQL

3.1.2. Catalog Portlet System Layout Overview

Figure 3: An overview of the catalog portlet System Layout

School Staff

 Browser package UI

dotLRN community portal with portlet

Code Scripts
Tcl, Adp

dotLRN Portal

Portlet
OpenACS

End User
 Students

ODP Catalog
Import via parsing RDF file

Internet

Database
Postgresql

Web Server
 AOL server

Browser Package
OACS Application

NOTE: The dotted region illustrates the
scope of my browser system development.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 35

 3.1.3. Baseline Architecture

Throughout the development of this browser system, out of the main requirements listed in

chapter 2, the development was successful in including all of the baseline functionality which

summed together to provide a professional and versatile application both in dotLRN (portlet

package) and in OACS (Browser package). These main functionalities provided the

following features:

• The ability of importing current ODP catalogs into the system.

• The ability of importing future ODP catalogs into the system.

• The ability of browsing the entire hierarchy of the catalog via a simple UI.

• The ability of retrieving information about certain categories/links in the catalog.

• The ability to add/edit/delete links to/from a personalized portlet list that will appear in

the portlet.

• The ability of creating the portlet with the expected operations such as adding and

removing to/from a community as well as maximizing and minimizing.

• The ability of administrating the portlet contents by appropriate staff members.

• The ability of student users to access links/categories links from the portlet window.

Once these mentioned baseline features were fulfilled, the development continued in

implementing additional features. These features included:

• The implementation of a search engine that allowed searches to be made in

categories, sub-categories and links of the catalog via different attributes.

• The ability to allow the search engine to be queried from the portlet.

• The ability to allow custom URL links to be added to the system.

• The ability to add comments to the links in the portlet list.

Due to the time constraints of approximately 12 weeks some of the extra functionality was

not implemented, these are listed below:

• Implement advanced searching algorithms.

• Send notifications to students about updates of the portlet contents.

• Allow editors to register and help organise a selected category to increase the

catalog.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 36

3.2. Data Model Discussion

The data model represents the way in which the browser system was stored in the OACS

database (in PostgreSQL), this includes tables , indexes and key relations all of which sum

up to determine how the data of the catalog and the custom list were accessed, manipulated

and stored internally. It is clear that this plays a major role in determining the efficiency and

reliability of the entire system since it is the pivot point of serving the users with timely

operations, thus the careful design of this model was absolutely critical since any

unnecessary fields or tables could cause major delays or issues due to the large amount of

data being held which is over two gigabytes in size (DB size). At the same time the data

model had to be kept simple in order to allow additional work in the future and not confuse

developers with unnecessary fields/tables.

This section will be devoted to the explanation of the data models that were reviewed as

well as the final one that was implemented for the browser system. To be exact there were

two main data models, the first of which was the previous catalog system DM that was

implemented by the two students mentioned in the historical considerations Mitsunori and

Roger from the USYD, the second is the one that was implemented as the best for this

thesis study in terms of the browser system goals. Both of these will be mentioned in the

next two sections and then a final discussion on the decisions made will be elaborated on in

order to justify these decisions in section 3.2.3.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 37

3.2.1. Previous Catalog System Data Model

This section will provide a quick summary on the data model that was implemented in the

study conducted by these two students last year. The summary will mention the tables that

were used as well as their properties and purpose within the bibliographic catalog system

[8]. The data model consisted of 8 main tables:

1. Categories Table
This table holds all the categories that are available within the bibliographic system it holds the
category id, name, description as well as the creation date.

create table cat_categories (
 category_id integer references acs_objects(object_id) primary key,
 category_name varchar(100),
 description text,
 creation_date timestamp
);

2. Categories map Table
This table is used to build a recursive tree of categories by using the cat_categories table. It stores the
category id, a parent_id which maintains a link to the category’s parent, and a child_id which
maintains a relationship with its children.

create table cat_categories_map (
 category_id integer not null references cat_categories(category_id),
 parent_id integer not null,
 child_id integer not null
);

3. Categories entry types table
This table is used to store new types of references such as CD’s, books, URL’s and any other new
category to the system. It stores the unique id of the new category, its title as well as its description.

create table cat_entry_types (
 type_id integer references acs_objects(object_id) primary key,
 title varchar(100) not null, --name of particular type of reference e.g. book, article etc.
 description text
);

4. Category Entry References table
This table is used to hold all unique references within the catalog, the references here are similar to
url’s in the ODP catalog where each row of this table represents a new reference in the system. The
table stores entry_id the unique id of the reference entered into the catalog, its title, author as well as its
description.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 38

create table cat_entry_references (
 entry_id integer references acs_objects(object_id) primary key,
 entry_title varchar(100) not null,
 entry_author varchar(100) not null,
 description text
);

5. Category Entry map table
This table is used to maintain a mapping between each unique reference entry with its respective
category and type. This table stores the category_id of the entry’s category as well as the entry_id for
the reference in the cat_entry_references table and its type_id which represents a unique id for the type
of entry in the cat_entry_types table.

create table cat_entries_map (
 category_id integer not null references cat_categories(category_id),
 entry_id integer not null references cat_entry_references(entry_id),
 type_id integer not null references cat_entry_types(type_id)
);

6. Category field types table
This table maintains a list of all the different fields of information possible. An example of this would
be that a book may have an author and publisher while a CD may have a producer and composer. For
each type a new field will be created and then stored in this table. It stores the field_id which is a
unique id representing the field type and the field_name which is the name of the field.

create table cat_field_types (
 field_id integer not null primary key,
 field_name varchar(100)
);

7. Category fields map table
This table maps an entry to all the corresponding fields that it has in its reference where each field that
the entry has would require a new row. An example would be if a CD had a producer, artist and
composer it would occupy 3 rows within this table. This table stores the unique entry_id which points
to a unique entry that is being stored in the database, also field_id which is the unique type of field that
the entry contains and field_description which represents the entry’s particular details for that field.

create table cat_fields_map (
 entry_id integer not null references cat_entry_references(entry_id),
 field_id integer not null references cat_field_types(field_id),
 field_description text
);

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 39

8. Category type fields map table
This table is used for the correlation of a type and the fields that can be selected for a particular entry if
it were a specific type. It stores the type_id which references that of the cat_entry_types table that is it
points to a particular type to which the field belongs to.

create table cat_type_fields_map (
 type_id integer not null references cat_entry_types(type_id),
 field_id integer not null references cat_field_types(field_id)
);

Below is the original entity-relationship diagram for the bibliographic catalog.

Figure 4: The entity-relationship diagram for the bibliographic catalog data model [8]

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 40

3.2.2. Implemented Browser System Data Model

Following on from our Data model discussion this section will outline the data model that

was implemented for the browser system. The data model contains four main tables, three

of which were required to hold the ODP catalog including its hierarchy and contents, the

final table was a single table implemented to store the portlet list contents.

Please Note: A better understanding of the data model storing the ODP data will be clearer after reading
chapter 4 since it will discuss in detail how the tables were used while the importing of the ODP catalog
took place, for now an outline of the data model is sufficient.

1. The Structure Table
This table is the first of the 3 main tables that hold the ODP catalog. It represents the structure for all
the categories, in other words it contains the skeleton of the catalog holding the most complex part of
the ODP data - its hierarchy, containing over 460 000 categories. You will note that the table holds
catid which is the unique primary key for each catalog in the directory, it also stores the topic which is
the full name or path for the category within the hierarchy such as “Top/Arts”, next we have the title
field which is just the name of the category without the path, for example “Arts”. The description field
contains a brief description of the content of this category, the final field in the table lastupdate is just a
timestamp of the last date and time the catalog was edited by the current online ODP editors.

CREATE TABLE "structure" (
 catid INT NOT NULL DEFAULT '0' PRIMARY KEY,
 topic TEXT NOT NULL,
 title TEXT,
 description TEXT,
 lastupdate TIMESTAMP

);

2. The Resources Table
The resources table is the second table for the ODP data which stores each category’s relations with
other categories/sub-categories. Due to the large number of categories within the ODP data , the
relations between the categories are very important in allowing the complete retrieval of relevant
resources for queries on the information. Hence this table manages all the types of relations for each
category or subcategory based on the relation types within the RDF format (discussed later). It stores
the catid which is the id of the category obviously this is not unique since each category in the
structure table can have multiple subcategories within this table that have the same id. The other two
fields contain the rtype which is the name of the relation type with the resource field , this resource
field is the path for the subcategory that the current relation is based on.

CREATE TABLE "resources" (
 catid int NOT NULL DEFAULT '0',
 rtype TEXT,
 resource TEXT

);

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 41

3.The URL’s Table
The third table that aids the storing of the ODP data is the xurls table. This is responsible for holding
the “content” of the catalog, as in it is responsible for filling in the skeleton that is set by the
“structure” table. Each field in this table is a url, it is represented by a catid which is the category id of
the category this URL belongs to, we then have the priority field which is an integer representing the
priority of the url, the age field stores a description of the age group expected for the viewing of this
site , the mediadate field only appears if a certain link contains an article in a news paper, the url field
is the actual http address to this website , the title is the name of the category it belongs to and finally
the description field is the description of the content available on this URL.

CREATE TABLE "xurls" (
 catid INT,
 priority INT,
 ages VARCHAR(32),
 mediadate VARCHAR(32),
 url VARCHAR(1024),
 title VARCHAR(1024),
 description VARCHAR(8192)

);

4.The browserurl table
This table although part of the data model, is not related to the previous 3 tables, rather it is a single
table that is used to store the links (to a URL or category) that are selected by the user to appear in the
portlet window. The table stores three main fields about each link , url_id is the unique id for each link
added into the portlet list , the title field carries the actual http link or path into a category while the
body carries the comment that can be added to each link as an optional field to appear in the portlet.
You will notice that the url_id references the acs_objects table , this is essential in allowing each link
in the portlet window to be stored as an object – since this allows the gaining of the permissions model
provided by the OACS architecture.

create table “browserurl” (
 url_id integer constraint browserurl_fk
 references acs_objects(object_id)
 constraint browserurl_pk
 primary key,
 title varchar(255)
 constraint browserurl_title_nn
 not null,
 body varchar(1024)

);

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 42

Below is the entity relationship diagram for the data model implemented for the browser

system, all relations are shown as well as table attributes. You will note that as explained

above the browserurl table has a separate concern to the tables that store the ODP data

and hence is not related to them.

Figure 5: The entity-relationship diagram for the browser system

structure

 catid: integer PK
 topic: text NN
 title: text
 description: text
 lastupdate: timestamp

resources

 catid: integer NN
 rtype: text
 resource: text

xurls

 catid: integer
 priority: integer
 ages: varchar(32)
 mediadate: varchar(32)
 url: varchar(1024)
 title: varchar(1024),
 description: varchar(8192)

browserurl

 url_id: integer PK
 title: varchar(255) NN
 body: varchar(1024)

Legend

PK : Primary Key
NN: Not Null

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 43

3.2.3. Data Model Comparisons

In the previous two sections both data models were outlined, originally the idea of this thesis

study was to continue on and import the ODP catalog into the data model that was

developed by the two students from the WEG group last year. Although after the careful

assessment of this data model it was not too long before it was decided that that this would

cause a great delay in the development of the browser system as many amendments would

have had to be made since the original catalog had different goals to reach apart from its

general approach to the importing of data which was not adhering to the standards of ODP

dumps i.e. RDF format. To be more specific these problems along with other reasons for the

selection of the second data model to be implemented are listed below:

• First of all, the students worked on a data model that was developed before the input

format of their import function was decided upon, this is one major flaw since it forced

them to base the import file format according to their data model which limited the

type of file formats that could be imported and did not take into account any popular

standard file formats such as RDF, hence automatically disallowing the import of any

large catalogs available on the web since the majority of them are based on these

standards.

• For the goals of the browser package the Bibliographic catalog system’s DM was

unnecessarily complex and could have been simplified much further, for example, the

cat_entry_types table was not needed since this could have been modeled as an

extra field within the categories table and served the same purpose, in fact this is

what was used in the browser system DM since it is more efficient. As for the first

data model each new category would have a new row in this table and with over

460 000 categories in the ODP catalog, this would create a large table structure that

was not needed. Instead the browser package defines the category type by a unique

string field name in the structure table that allows the RDF to do the work in terms of

classifying all the different types of categories within the data. This same problem

also applies to some of the other tables that were used in the bibliographic system

such as cat_entries_map which maps each single reference to its details, which

again is unnecessary as the detail fields could have just been added as fields in the

table that holds the references that is the cat_entry_references. This method was

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 44

used throughout the model , unnecessary tables being created to store information

that could have been represented via text fields in another table, hence in terms of

the browser package it could not afford to store such tables to carry irrelevant data

since the 4 million URL links and 460 000 categories would have caused over 4.5

million fields in tables that were unnecessary – and this is not taking into account the

growth of the catalog which would increase a few hundred thousand

URL’s/categories per year. All of this would have caused greater overhead time for

the retrieval of data from the catalog and hence was not included in the final DM.

• Apart from this it can be noted that another problem existed, the tables in the

Bibliographic DM were also linked to the acs_objects table for cat_entry_references,

cat_categories and cat_entry_types, which caused every single reference/category in

the catalog to be an object, again for the browser system the creation of over 4

million objects would have been very inefficient, in fact it would have been a critical

issue in terms of retrieval since object creation can be very costly with such large

numbers (storage space) which would not only slow down the retrieval of the

browser catalog data but also the entire OACS database as each object would

require an entry in the acs_objects table.

To sum up, we can see that although the first data model operated smoothly for the

bibliographic system, it would have caused an increase in inefficiency for the browser

system, mainly due to the fact that originally this DM was not expected to hold such large

amounts of data (approximately 2 GB of DB space) and hence the DM did not cater for such

future ideas. Although the creation of objects for each reference/category stored would have

seemed to be a good idea at the start in terms of inheriting certain reusability features of the

OACS framework such as the permissions system, it would have been the major downfall of

the browser system in terms of efficiency. Furthermore, another note that must be made is

that the direct permissions system on different categories within the catalog is unnecessary

as the ODP is public to all, but what had to be controlled was the browserurl table which

stored the links to be displayed in the portlet and hence this is where the OACS permissions

system was applied directly (as well as the UI) in order to control the rights for different

users such as the staff and students.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 45

3.3. User Interface layout and Design

This section will concentrate on the visual design aspects of the browser system that were

considered mainly in the browser package User Interface but also on how the catalog portlet

was to appear within the dotLRN portal.

3.3.1. Catalog Browser Package UI

The main idea behind the selected design for layout of the interface of the portlet browser

package is based on the OpenACS template system. This has become one of the significant

factors in increasing the popularity of OpenACS in regards to web development, since it

allows a quick and efficient method of creating an elegant user interface for a website.

The general concept of the templating system is to help in the “separation of concerns” that

is, it allows the business logic of the application to be separated from the presentation layer

of the website in order to allow both programmers and web designers to work

simultaneously without any problematic compatibility issues.

The system allows this by splitting the work into two different files, the first being the .tcl file

which is responsible for the business logic i.e. performing database queries and setting

particular variables while the .adp file acts as a companion to the .tcl file by filling in the

presentation details of the web page. This .adp file is called from the .tcl script (in the last

line) and contains mainly HTML code for the webpage alongside some calls to variables

from the tcl file.

The final point to note about this templating system is that it avoids the compatibility issues

by setting up a “page contract”, this is basically a list of HTTP parameters that the .tcl file

expects to receive and then a list of tcl variables (data sources) that will be available in the

.adp page in its display [9]. A typical template layout of an OpenACS webpage is listed

below in figure 6 below.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 46

Site Logo Advertisement Banner (optional)

Tool/Navigation Bar

Su
b-

se
ct

io
n

C
on

te
nt

A

re
a

Main Web Page Content Area

Page Footer
Figure 6: Typical webpage layout corresponding to the OpenACS template system

Figure 7: Real life example of an OpenACS website and User Interface

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 47

The original proposed Browser package design appeared fairly similar in structure to the

template diagram of figure 6 above and still had the same properties such as the navigation

bar, main content, logo as well as the footer. The main idea for the content section of the

interface was gathered from the www.dmoz.org website shown in figure 8 below. This was

chosen since it had a simple and clear interface and because it displays the same catalog

data that is to be available in the browser application’s content area.

Figure 8: DMOZ User Interface of web catalog

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 48

Below is a diagram of the original proposed browser UI layout design with the DMOZ

website content within the content area.

Greeting for User

Portlet list

- Add link
- Delete link
- View List
- Comment

Arts
Movies, Television,
Music...

Business
Jobs, Real Estate,
Investing...

Computers
Internet, Software,
Hardware...

Games
Video Games, RPGs,
Gambling...

Health
Fitness, Medicine,
Alternative...

Home
Family, Consumers,
Cooking...

Kids and Teens
Arts, School Time, Teen
Life...

News
Media, Newspapers,
Weather...

Recreation
Travel, Food, Outdoors,
Humor...

Reference
Maps, Education,
Libraries...

Regional
US, Canada, UK,
Europe...

Science
Biology, Psychology,
Physics...

Shopping
Autos, Clothing, Gifts...

Society
People, Religion, Issues...

Sports
Baseball, Soccer,
Basketball...

Copyright – Abbas Chebli

Figure 9: The original proposed browser package UI design

Home About Support

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 49

3.3.2. Catalog Portlet Interface

The catalog portlet User interface also adheres to the template system for OACS that was

discussed in the previous section, the only difference here is that the browser portlet UI

appears smaller since it is constricted to a certain small window within the dotLRN portal.

The portlet’s original proposed UI was designed accordingly to the portlet window views

already available in the dotLRN community for many other packages such as Calendar,

homework and news. In figure 10 below is the picture of the original proposed UI design for

the portlet.

 Figure 10: The original proposed browser portlet UI design for dotLRN

Portlet Links Available

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 50

�

������	� �

���������������

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 51

4.1. The Importing of ODP into PostGRESQL

The first stage of the implementation phase was attempting to import the ODP hierarchy and

content into the designed data model for the browser package that was discussed in section

3.2.2. For the sake of clarity this section will not discuss the exact steps taken to import the

catalog into PostgreSQL as the instructions have been attached to Appendix B, but rather it

will explain how the data was parsed accordingly to the standards of the RDF and how this

data was then coordinated with the data model for PostgreSQL. This section will give a brief

definition of the RDF standard before delving into its complex tag structure in order to supply

sufficient knowledge in understanding the following sections of the implementation process.

4.1.1. RDF and the ODP Import files

The Resource Description Framework is a foundation for processing metadata and is the

source that provides interoperability between applications that exchange information on the

web [10]. RDF can and has been used in a variety of applications but with respect to this

thesis study its main use was in terms of cataloguing since it is the standard by which the

ODP data is “dumped” in. What is meant here is that sites like the popular dmoz.org provide

updates for their ODP catalog weekly by exporting it into an RDF file format which is

essentially a type of XML file. This is essentially where the original information of the ODP

directory can be accessed from since it is a source free to all.

The ODP data is dumped into two main files, the first of which is the structure.rdf (approx

500 MG) file which is a dump of the category hierarchy (skeleton) for the entire catalog. The

second file called content.rdf (approx 1.2 GB) contains the catalog content mainly consisting

of URL’s and other resources available on the web and their descriptions each of which is

categorised into one of the categories in the structure hierarchy. In the two figures below are

small fragments of the structure.rdf file and content.rdf file , although they only show one or

two different tags , they are listed in order to give an idea of the structure that the RDF

dumps follow for the ODP catalog.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 52

-� ������	���!"���"#�
 � �����#� ������#��
 � ������
#��� �������
#��
 � ����$����
#� !" #"� ���	!$	 � �����$����
#��
 � ��		���	�	
���	�
!"���%��
�"��#��
 � ��		���	�	
���	�
!"���%&�������"��#��
 � ��		���	�	
���	�
!"���%&������"��#��
 � ��		���	�	
���	�
!"���%'����"��#��
 � ��		���	�	
���	�
!"���%(�������"��#��
 � ��		���	�	
���	�
!"���%)����
���"��#��
 � ��		���	�	
���	�
!"���%*���
�"��#��
 � ��		���	�	
���	�
!"���%&���
�"��#��
 � ��		���	�	
���	�
!"���%+����"��#��
 � ��		���	�	
���	�
!"���%���
"��#���
 ������#�

Figure 11: A fragment of the structure.rdf file listing some of the “Top” categories.

<Topic r:id="Top/Home">
 <tag catid="7"/>
 <d:Title>Home</d:Title>
 <link r:resource="http://www.homeideas.com/"/>
 <link r:resource="http://www.housenet.com/"/>
 <link r:resource="http://members.aol.com/yodapro/index.html"/>
 <link r:resource="http://www.marthastewart.com"/>
 <link r:resource="http://www.mfgsupply.com"/>
 <link r:resource="http://www.bccondo.com"/>
 <link r:resource="http://www.contractornet.com"/>
 <link r:resource="http://www.kcweb.com/fl/freelance.htm"/>
</Topic>

<ExternalPage about="http://www.homeideas.com/">
 <d:Title>Home Ideas: Home Improvement Ideas for Kitchen, Bath, Yard and
Garden, etc.</d:Title>
 <d:Description>The ultimate resource for home projects. Research projects
using past issues of Today's Homeowner magazine, request free product
literature, and link to over 700 industry websites.</d:Description>
</ExternalPage>

Figure 12: A fragment of the content.rdf file listing some URL’s for the Home category

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 53

4.1.2. Parsing the RDF Files and Tags

The parsing of the two files that were discussed in the previous section was executed by two

perl scripts (included with the attached interactive CD), these scripts simply cleaned out all

the tags from the RDF files and stored the appropriate fields of the categories and links in

the data model for the browser system. More specifically the structure file was parsed and

stored into the “structure” and “resources” table since this file contains the relations for each

category as well as the category structure/hierarchy, while the content file was parsed and

stored into the “xurls” table listing each entry as a single URL. It must be noted that the RDF

structure contains many tags within each dumped file, but only some of these tags are

necessary depending on the scope they are being applied to. The first file used for the

browser package “structure.rdf” contained the tags listed in figure 13 below although only

the shaded tags were needed to be stored into the browser DM.

Alias -

Target -

Topic Represents the topic field in the structure table.

altlang * a category that is in another language

catid Represents catid field in structure table.

d:Description Represents description field in structure table.

d:Title Represents title field in structure table.

d:charset -

editor -

lastUpdate Represents lastupdate field in structure table.

letterbar * category that is categorised in letters or numbers i.e. A-Z or 0-1000

narrow * represents a subcategory of the lowest level – level 0

narrow1 * represents a subcategory of the second highest level – level 1

narrow2 * represents a subcategory of the highest level – level 2

newsGroup -

related * a category that may be related to the current category

symbolic * another link in the catalog that can be a level 0 subcategory

symbolic1 * another link in the catalog that can be a level 1 subcategory

symbolic2 * another link in the catalog that can be a level 2 subcategory

Figure 13: Structure.rdf tag list

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 54

Very Important Notes about the Structure tags:

• All rows marked with a * are types of the attribute “rtype” in the resources table from

the Data model. This field is vital in collecting the correct categories from the data

since it defines the way a category is related to its sub categories and is used in a

recursive manner from within the resources table of the DM to collect all the

subcategories of a current category and each subcategory’s subcategories and so on

(until it reaches the links level) via its relational types and then lists them in order

from the highest level to the lowest level, this is exactly what is used on websites

such as Yahoo and DMOZ to create the hierarchical appearance of the data, and

hence was also implemented in the browser package to give this effect.

• Narrow tags are subcategories of the given category and are organised into three

levels narrow2, narrow1 and narrow.

• Symbolic categories are links to other categories within the catalog that can also be

returned as a subcategory to a given category and are organised into three levels

symbolic2, symbolic1 and symbolic.

• The narrow and symbolic levels are grouped together when the categories are

returned on the browser UI, this is a common act in displaying the ODP data on any

web site i.e. narrow2 and symbolic2 appear together etc.

• Related categories can also be subcategories since they may be related in some

way to the category, this does not have levels and it appears under the “See also:”

heading once the browser catalog has made a listing on the web page (Discussed

later in the document).

• altlang categories are the categories that are listed in the “See this category in other

languages:” heading once the browser catalog has made a listing on the web page,

they represent the current category in different languages.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 55

Below is the tag structure for the content.rdf file, again similar to the structure file only the

important tags were selected to be stored in the data model. The content tag structure is

more self explanatory since the fields refer directly to the attributes of the xurls table.

ExternalPage Represents the url field in the xurls table.

Topic -

Ages Represents the ages field in the xurls table

Catid Represents the catid field in the xurls table

d:Description Represents the description field in the xurls table

d:Title Represents the title field in the xurls table

link -

link1 -

mediadate Represents the mediadate field in the xurls table

priority Represents the priority field in the xurls table

Figure 14: Content.rdf tag list

NOTE: A step by step listing of the importing instructions is provided in appendix B for the

use of OACS and browser package developers.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 56

ROOT (/web/service0)

browser

Other OACS/dotLRN packages

sql

postgresql

tcl

www

packages

browser.info

4.2. The OpenACS Browser Package

OpenACS software development adheres to certain software principles that must be

followed in order to add a new web application to the existing framework. Its method

consists of a set package structure that must be followed so as to allow the web application

to be installed, maintained and removed by the central package manager for OACS called

the ACS Package Manager (APM). This APM is used to manage all packages within OACS

and is responsible for the following tasks [11]:

• Package registration

• Automatic installation of a package, which includes loading data models, code

libraries etc.

• Checking what packages depend on other packages before they are installed.

• Storing information on the package including ownership and a file list.

To ensure that all packages can be maintained correctly each package must store its files

according to the package file structure depicted in the diagram below, this was followed for

the development of the browser package.

Figure 15: OACS Package Structure

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 57

As noted from the diagram each package including the browser package has three main

folders (sql, tcl, www) as well as the package’s corresponding .info file (browser.info) which

specifies information about the package such as the name of each file it contains as well as

the package parameters. Each of the three folders within the browser package will be

discussed below.

4.2.1. SQL Directory

The main contents of this directory are directly related to the data model of the package.

Within this directory there must be a sub-directory by the name of the database that the

model will be installed into, for the browser package this is postgresql since the package

supports only the postgresql database. Within this sub-directory are a number of SQL files

that have the main aim of creating and dropping the data model as well as any SQL

functions used to access the database. The actual file names must correspond to the

package name , for example the create file for the DM is called browser-create.sql while the

drop file is called browser-drop.sql as these are automatically called from the APM upon

installation. Within this directory are another two files for the browserurl table one of which

creates the table and the second which creates the functions that access that table in the

DB their names are browserurl-table-create.sql and browserurl-functions-create.sql

respectively. These files are called from the original create file for the browser package and

hence the APM only needs to call that file to create the data model.

4.2.2. TCL Directory

The TCL directory contains library files that contain TCL methods (procs) that can be called

from any file within the package. For the browser package this consists of a single file called

browser-procs.tcl that contains a number of methods that are called from some of the other

files in the package. This file serves as a form of API for the package, which increases code

re-use by allowing the central repository of generic functions for the package rather than

copying these functions into each file separately.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 58

4.2.3. WWW Directory

This directory contains all the web pages that are viewable by browser package users, as

mentioned earlier through the discussion of the OACS template system these web pages

have a “separation of concerns” methodology of their own. That is each web page has a

*.tcl, *.adp and a *.xql file that is stored in this directory. This helps keep the web page logic

apart from the html design so as to allow a designer and programmer to work

simultaneously. The .tcl files are the scripts that perform the logic of a web page, that is

generating non static data or results from the database or even setting variables that are to

be used on the html page. The .xql file stores any DB queries that this file uses, so as to

allow a neater approach to code layout by keeping the queries separate from the scripting

code. The .adp files correspond to the templates and web pages (html) that the user sees in

the presentation layer of the UI. For the browser package there were a large number of files

in this directory as we well as some sub-directories that were HTML related such as “css”

and “images”, a complete list of these files is listed in Appendix B.

NOTE: In order to view the application under the current installation of OACS/dotLRN a new

subfolder had to be mounted via the APM manager to the root of the site. That is, the APM

will create an instance of the browser package at the /browser directory of the site unless

specified otherwise. Hence the home page for my application will be under

http://server/browser.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 59

4.3. The dotLRN Browser Portlet Package

If we recall from our discussion in chapter 1 about the dotLRN platform we learnt that every

single dotLRN package is an “applet” – not a java applet, but rather a term referring to “small

application” [5]. We also discussed how these applets must provide an API under the acs-

service-contract mechanism so as to allow dotLRN core packages to dispatch calls to them

on the occurrence of certain events such as removing/adding the applet to/from the

community or adding/removing a user to/from a community that has this applet enabled.

The dotlrn-browser applet package was developed under the exact same file structure that

was discussed in the previous section concerning the browser package hence for the sake

of clarity this will not be repeated. The only main difference that has to be mentioned is that

the dotLRN applet package had a number of procs that were included in the tcl directory

alongside some SQL functions that were included in the postgresql directory in order to

provide for the function calls of the dotLRN core packages. Apart from community activity

some of the procs catered for functions like minimizing the portlet window, maximizing the

portlet window and allowing correct permissions for the portlet so that only administrators

could view the portlet admin page. All of these functionalities will be displayed in chapter 5

as part of the final UI results that were achieved by the final browser system.

4.4. Browser System Operation

This section details an in depth discussion on how the functionalities of the final browser

system were implemented and developed. It is mainly coordinated with the proposed data

model and the achieved baseline architecture (as well as some extra functionalities) that

were listed in the design – Chapter 3.

4.4.1. Browser Database Interactions

In developing the browser system most of the user interactions were via the browser

package interface, which interacted with the stored ODP catalog in the database in order to

achieve a well set out hierarchy of results for display on the UI of the application. The

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 60

database interactions that were used in order to retrieve these particular results were

collected recursively by calling the main script of the browser package (sub-cat.tcl) as soon

as a category was clicked upon in the interface. What is meant by recursively is that each

time a category was clicked upon this category’s path was fed into the script as a parameter

and executed all the resource fields of the resources table for a particular type of relation of

this parameter, and then each of the returned subcategories could also be clicked upon. For

example if we take a look below:

SELECT resource FROM resources
WHERE catid = (SELECT catid from structure where topic = ‘Top/Arts’) AND
(rtype = ‘narrow2’)
Order By resource

In this example query we have selected all the different resource (path of subcategory)

entries of the catalog that are of the category ‘Top/Arts’ (which was clicked upon in the UI)

and that are related to this category by the ‘narrow2’ type of relation , which in other words

means we have collected the highest level of subcategories for the category of ‘Top/Arts’ or

arts. Although it may be difficult to understand the first time around , it should be re-read to

ensure that this simple example is understood as it is the basis of the database interactions

that take place on any current website listing ODP catalog’s or any other RDF imported

catalogs. This example lists one of the types of relations to a clicked upon category and

hence similar queries are executed to return the remaining different relations , these were

listed in Figure 13 (marked by a *).

The final result is the listing of all the possible subcategories and links of a clicked upon

category on the UI.

4.4.2. Browser Hierarchy listing

Now that we understand how the database operations were used in order to retrieve the

relevant categories and links from the database, the format in which this data is listed on the

interface must be explained. The subcategories are listed in a certain hierarchy followed by

the URL links of that category, that is, if there are links for that category since it is possible

for categories not to have URL links and just have subcategories. The main idea for the

listing was collected from the DMOZ website as mentioned in the design since they

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 61

Level 2

Level 3

Level 4

Level 5

narrow2

symbolic2

narrow1

symbolic1

narrow

symbolic

related

Level 1 letterbar

Level 6 altlang

Top of the display page

Bottom of the display page
Level 7 URL’s

represented the same ODP catalog very clearly and simply. The hierarchy format is

depicted in figure 16 below according to the way it was arranged in the browser UI.

Figure 16: Hierarchy of the catalog output onto the screen

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 62

4.4.3. The Browser Permissions System

According to the design, the browser system had to be implemented in such a way so as

only to allow people with administrator permissions, that is only staff members of the

community to access certain areas and operations of the browser UI and the portlet display.

This was successfully implemented and proved to be a key aspect of the system since it

controlled the users that could add and edit information from the portlet list. Based on the

permissions system of dotLRN, the package only allowed the access of the portlet link list by

people who had administration rights granted by the administrator for the particular

community that the portlet was to appear in. The way this access was controlled is that each

time the browser UI was accessed checks upon the access rights of the user (that is if

he/she had admin rights) were conducted in order to determine if the portlet list navigation

bar would appear on the interface. If the user was a staff member with administration rights

the portlet navigation bar was generated on the user interface allowing the portlet list to be

edited, also allowing an “add” link beside each subcategory and url in the UI to appear so as

to provide quick adding to the portlet list. Whereas when a student was either directed from

the portlet or was browsing through the site individually the browser UI would recognize this

students access rights and not display the portlet list navigation bar or the “add” links beside

each category/link in the Interface. Hence if the user logged into the browser system was a

student the interface would be presented just like a normal catalog listing website similar to

yahoo.com or dmoz.org by allowing the browsing and accessing of the categories and

URL’s directly from the UI.

4.4.4. Adding links to the portlet list

The adding of links to the portlet list was implemented successfully. Each staff member had

the ability to add new links from the catalog listing into the portlet list so as to appear in the

portlet within their community. The addition of links supported both adding of subcategories

and URL’s, since after the top categories each link in the catalog was either one of these.

Once the link was added by the user the link and its details were automatically inserted into

the browserurl table in the DB, if the link existed in the list already a message would appear

informing the user of this and asking him/her to add another link.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 63

The implementation of the adding functionality also included an extra adding option that

could allow a custom url to be added into the portlet list. The user could add a custom url by

typing in the details manually, from here on the link was added in the same way as if it was

selected from the catalog listing in the UI.

4.4.5. Deleting Links

The deleting functionality was implemented as planned. Although it had to be carefully

designed in order to allow the staff users with a confirmation page in order to ensure the

user wanted to remove the link that was selected. The user could delete any

URL/subcategory from the portlet list successfully with confirmation. Once the user had

confirmed the delete action the link would be removed from the browserurl table from the

database and hence the portlet contents would also mirror the change once the portal page

was refreshed. Both the links and the subcategories could be removed from the portlet list.

4.4.6. Adding Comments to Links

One of the extra functions added, the commenting ability on links was implemented

according to the requirements specified. It only permits staff members of the community to

add comments on existing links in the portlet list. The user is able to choose any of the

current links in the portlet list and add a new comment to them that would appear beside the

link in the portlet window. The user could add comments to subcategories and URL’s , this

was implemented by inserting the comment into the browserurl table for the chosen link ,

hence allowing the portlet to show this comment once the page was refreshed.

4.4.7. Editing Links

This was also successfully implemented in that it allowed the correct group of users (staff) to

edit current link information from the portlet list, each change was applied to the database

entry for that particular row within the browserurl table and hence all changes would appear

in the portlet window once refreshed without any problematic issues.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 64

4.4.8. Searching the Catalog

This was the final functionality added to the browser package in order to add extra

functionality to the browser system. It was successfully implemented via queries that were

made on both the structure and the urls of the ODP data according to a user selected

attribute and a user entered query. This was developed by searching through the selected

column contents of certain fields in the tables for the entered query. The user can enter any

string field into the search form and it would return appropriate results or it would return a

message that the query could not be matched. The search mainly applied to the structure

and xurls tables, according to the particular search option that was chosen. There were 4

main types of searches that could be executed:

• The “urls” option search was implemented by searching for the entered query in the

url and description fields of the xurls table in the database.

• The “title” option search was implemented by searching for the entered query in the

titles of all subcategories in the structure table.

• The “topic” option search was implemented by searching for the entered query in all

the subcategories topics in the structure table.

• The “All” option search was implemented by searching for the entered query

anywhere in the structure table so as to return subcategories.

The search could have been implemented with many other search options, but it was

decided that these four would be the significant searches that would be provided. Although

my first aim was also to provide advanced searching algorithms, due to the time constraints

it could not be implemented as part of the browser system.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 65

4.4.9. Portlet Accessibility

This operation of the browser accessibility is one of the main features of the browser

system. It was implemented successfully according to all the set requirements in terms of

catalog functionality and accessibility as well as all dotLRN standards in terms of integrating

with the community portal. With respect to the integration factor with the dotLRN community

portal the final browser portlet supports:

• The addition to a dotLRN community portal.

• The removal from a dotLRN community portal.

• The addition and removal of a user to/from a community that has the browser applet

enabled.

• Minimization, maximization from the portal page.

• Removal from the “portal layout” personalization page for the community.

• Different access levels – only members with administration rights can view the portlet

administration page.

In terms of the catalog functionality the final browser portlet implementation included:

• The ability for users (both students and staff) to view the added links by the staff

members of the community, this was implemented by allowing the portlet/applet

package to read the contents of the portlet list from the browserurl table from the

database. This table consists of the entire list that the staff selected from the browser

UI and hence is displayed in the portlet window. Each link alongside its comment is

shown.

• Category links can be accessed, if the link is a subcategory once clicked upon by the

portal member it will direct them into the appropriate catalog listing for that

subcategory. This was implemented via calling the same script that is used in the

browser UI to generate the hierarchy listing for that category.

• URL links can be accessed, if the link is a URL link once clicked upon by the portal

member it will redirect them automatically to the corresponding website. This was

implemented by storing the http links in the portlet list with their title as the url value

of the website , so they can be generated into the portlet as actual <a href> tags in

order to be accessed.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 66

• An extra functionality added to the browser portlet was the search ability, this permits

the same search functions as the search in the browser UI to be accessed via the

portlet window, once a search is submitted from the portlet the user would be

redirected to the search results page in the browser UI for his query. This was

implemented via the same search method used in the browser package, by mirroring

the search form in the portlet and allowing its access directly from there to the

students. A main point that must be noted is once a search query was entered and

submitted the search results would not appear with “add” links beside them if the

user who submitted the query was a student, again this was controlled by the

permission system of the browser application to ensure no loose holes were present

in the system that would allow students to modify links to the portlet list.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 67

�

�

������	���

	�������

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 68

By this stage we have successfully analysed the entire design and implementation phases

of the browser system, hence a detailed understanding of the core back-end principles of

this web application is clear. In this Chapter the main focus is to discuss and walk through

the User Interface of the system in order to help visualize the discussed functionality

available for the user in the application. Both screen shots of the browser application and

portlet will be displayed exactly as they would appear from the user’s perspective.

5.1. Final User Interface

The browser application had a very simple and clear looking interface. As planned it was to

depict many of the popular ODP catalog web sites available such as “Yahoo” in order to

adhere to the user’s cognitive model of such hierarchy listings and allow the same usability

features to flow through the use of this interface. The main screen of the final browser UI is

shown below in figure 17:

Figure 17: Browser package home page for staff (screenshot)

1

2

3

4

5

6

7

8

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 69

As you can see the interface used an appropriate layout of color that would be comfortable

to the user’s eye. It provides a good combination of images and content without over

clogging the screen with much complex data that would confuse new users to the system.

The system consists of a number of core aspects each of which is labeled in the diagram

and explained below.

Please note: This is the description of the staff member browser package since the portlet

list navigation bar is visible.

1. User Greeting: This is a common standard of OACS User Interfaces greeting the

user that is logged into the application.

2. Main Navigation bar: Provides links to less task oriented sections of the application

such as support and contact and news which links back to the OACS website.

3. Portlet List Navigation bar: This is the navigation bar that allows portlet list

accessibility as well as links to certain portlet list related tasks.

4. Search form: Search query form for access to the browser search engine.

5. Top Category Listing: Listing of the highest categories of the ODP data, this is

where all sub-categories branch from.

6. Open Directory links: For copyright purposes this was included to indicate that the

ODP data was used, it provides links to the main website www.dmoz.org.

7. OACS Logo: Another commodity of the OACS interface, the main logo to indicate

the application is running on OACS.

8. Browser Logo: The browser system logo, added to provide a more professional

appearance to the UI.

In the next few sections the different screens displayed in the interface will be explained,

these are all staff pages since the access list for the portlet is available, a student

perspective of this interface will be displayed later in this chapter in order to show the UI

differences for non staff users.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 70

5.1.1. Hierarchy Listing

As discussed in section 4.2.2. the main hierarchy is listed in a particular order as we view it

down the page, this symbolises the different sublevels and relations of the categories. Since

not all categories once clicked upon will have every single different level of the hierarchy the

screen shots below show different category listings that outline all the available levels of the

ODP catalog. The figure below will outline the new features of the UI that have changed

since the home page depicted in figure 17.

Figure 18: Browser hierarchy listing of the letterbar subcategory (screenshot)

From the diagram:

1. Current category indicator: Indicates the current category path in this example

“Top/Arts/Movies/Genres/Drama/Titles”.

2. Current Category Description link: link to the current category description.

3. LetterBar subcategory Listing: Level 1 of the screen hierarchy displays each

subcategory with its “add” link to its right.

1

2

3

4

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 71

4. Related Category Listing: level 5 of screen hierarchy display, since all other levels

are not available for this category they are omitted and the next available

subcategory is listed under the letterbar listing which is the related subcategories.

Below are some other hierarchy listing screens of the remaining levels of the ODP relations.

Figure 19: Browser hierarchy listing 2 (screenshot)

1. Level 2 subcategory Listing: Level 2 of screen hierarchy contains narrow2 and

symbolic2 links.

2. Level 3 subcategory Listing: Level 3 of screen hierarchy contains narrow1 and

symbolic1 links.

3. Level 4 subcategory Listing: Level 4 of screen hierarchy contains narrow and

symbolic links.

4. Level 5 subcategory Listing: Level 5 of screen hierarchy contains related links.

1

4

3

2

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 72

The screenshot above is continued below with the level 6 and level 7 of the hierarchy.

Figure 20: Browser hierarchy listing 3 (screenshot)

5. Level 6 subcategory Listing: Level 6 of screen hierarchy contains the altlang links

which represents this category in other languages.

6. Level 7 subcategory Listing: Level 7 of screen hierarchy contains the url links

which are the URL’s available for this category.

The above screenshots have displayed all of the 7 levels of the hierarchy that were

discussed in the implementation (4.2.2.), please note that each level is able to be added to

the portlet list whether it is a subcategory or a link , this can be done via the corresponding

“add” link to the right of the link.

5

6

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 73

5.1.2. Category Description

Once the user clicks on the “click here for category description” link from a listing page such

as the one in figure 18, the following screen is shown

Figure 21: Category Description (screenshot)

The above screen lists:

1. Category Description: This description represents a brief mentioning of what this

category is about.

1

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 74

5.1.3. Search Engine

Figure 22: Browser search (screenshot)

The above screen shows the search engine being queried.

1. Query field: Query field where the user must enter the desired search query.

2. Search type: The user can select the search type to use.

3. Search Results Display: Once the search query is executed the displayed search

results are listed here. Each search result can be added to the portlet list.

1

3

2

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 75

5.1.4. Portlet List Navigation Bar

As discussed earlier the portlet list labeled as 3 in the main UI diagram (Figure 17) allows

the staff members to access the portlet list links. The diagram below depicts the main portlet

list listing as well as the operations that can be applied to this list.

Figure 23: Portlet List Contents (screenshot)

From the diagram above:

1. Current URL listings: The available links in the portlet list that have been added by

the staff members.

2. Comment: This labels the comment entered for this particular link.

3. Edit link: This link is to allow the staff user to edit the link as well as its comment.

4. Delete Link: This link is to allow the staff user to delete the link from the portlet list.

1

3 4

2

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 76

Upto this point all of the browser package functionality has been outlined apart from the one

link on the portlet list navigation bar, the “view portlet” link. This link redirects the user to the

dotLRN community portal where the user can enter his community and view the portlet’s

contents. In this next section the focus will be on the portlet appearance and functionality

within this portal, outlining the users perception of the operations that can be executed on

the portlet.

5.2. Portlet Interface and Appearance

The portlet interface adhered to the typical portlet layout of dotLRN allowing the portlet list

contents to be displayed clearly as links that could be clicked upon by members of the

community. Each link would either lead back to the catalog in the case of a category link,

otherwise the user would be redirected to that particular website if the link was URL. As we

discussed earlier if a user is forwarded from a category link to the browser UI, the “add”

would disappear alongside the portlet list navigation bar since this student does not have

any permissions to edit list preferences , he/she can only browse through the catalog. A

screenshot of such a case will be depicted in this section also.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 77

5.2.1. Student Portlet Display

The following diagram depicts the browser portlet as a student would see it.

Figure 24: Student Portlet View (screenshot)

From this diagram we note 5 main aspects:

1. Browser portlet: Actual portlet window for the browser package in the portal.

2. Category link in the portlet: A category link that links back to the browser UI.

3. URL link in the portlet: A URL link in the portlet that links to the corresponding

website, once the user clicks on this he is automatically forwarded to the web link

listed.

4. Search Form: Depicts the exact same search functionality in the browser UI.

5. Comment: Comment made on the category link displayed.

1

2
3

4

5

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 78

Please note once the student clicks on the category he will be redirected to the browser UI

with the interface shown below in figure 25. We must carefully note how the portlet list

operations usually depicted in place number 1 (on the diagram) have been removed since

the user has no permissions to access these operations. Similarly the “add” links have been

omitted that were usually depicted beside each link on the right, usually at 2 and 3 in the

diagram.

Figure 25: Student redirect to browser package (screenshot)

1

2

3

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 79

5.2.2. Staff Portlet Display

The following diagram depicts the browser portlet as the staff members would see it, it is

clear that the only differences in this diagram to the student portlet is the administrator

option labeled 1 and the minimization option labeled 2 allowing the staff member to

administer and minimize the portlet respectively. These two screenshots are shown in the

following two pages.

Figure 26: Staff Portlet View (screenshot)

1

2

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 80

The administration page is generic for all the dotLRN portlets, it displays the administration

functions for each portlet individually. As you can see the browser portlet administration

allows the staff member to access the adding and deleting of links (1 in the diagram) by

redirecting them to the main browser UI displaying the current portlet list.

Figure 27: Portlet Administration page (screenshot)

1

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 81

Below is the depiction of the minimized portlet, the portlet can only be minimized by staff

members.

Figure 28: Minimised Portlet Display (screenshot)

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 82

�

�

������	���

�����������

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 83

6.1. System Evaluation

In order to get some feedback on both the user interface design and the usability of the

browser system it was decided that certain testing had to be conducted. Since this was to be

mirrored in a usual everyday university life, it was decided that a group of fellow students

from the university would test the browser package and portlet giving their insights on what

they thought of the user interface as well as the general usability of the browser package

and portlet.

A special thanks to these students who aided me in simple testing conducted:

• Mauricio Henriquez (Bachelor of software engineering (honors) -USYD)

• Katrina Rokhlin (Computer Science – Masters in architectural design - USYD)

• Alex Taylor (Computer Science - USYD)

In order to avoid bias decisions and conclusions it was also decided to test users from other

fields of education, that is those of which had a less technical computer knowledge in order

to get their viewpoints, hence a few external university friends from the fields of education

and dentistry also participated in the evaluation of the browser system.

In general the students noted a number of points about the system:

• The students mentioned that the interface was clear, simple and concise and allowed

a good browsing interface.

• The portlet was noted as being “convenient” since the students had not seen this in

any of their current E-learning platform (WebCT).

• Some of the students mentioned that the search engine could be improved if it was

quicker in returning the results of the entered query.

• Some students mentioned that advanced functionality would be added if each

student could personalize his own link list for personal use.

In general, the student’s evaluation was positive in terms of the goals set for the cataloging

portlet system, the added views on extra functionality and faster search engine results were

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 84

also positive in that they helped indicate some future work that could be added upon the

existing core functionality.

6.2. Future Work

Since the browser system developed was the first of its kind for such set goals, the majority

of this thesis study consisted of researching the ODP catalog and its hierarchy as well as

allowing its importing and display. Hence all the additional features that were planned to be

contained in the application could not be implemented in this version of the system.

However, due to its development on such an evolving open architecture as OACS it has

inherited the discussed reusability and modularity features and hence provided a solid base

for the work of implementing catalog functionality into dotLRN.

The browser system has sparked the connection between the greatest catalog available on

the web today and dotLRN, if in the future this is seen as an opportunity that can be built

upon so as to allow the system to become a permanent component of dotLRN, there will be

many extra opportunistic developments that can extend the system, some of these include:

• Implementation of advanced searching algorithms and techniques to improve

efficiency of searches.

• Allow students to receive notifications via email about changes made to the portlet

links by their staff.

• Provide mechanisms to permit students to keep personal link lists in their portal.

• Allow editors to register with the system and help categorise and expand the catalog,

similar to the DMOZ project.

• Allow the integration of the portlet with a multilingual dotLRN platform to serve for all

non-English speaking students.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 85

Conclusion

This thesis paper discusses the phases in which the ODP browser and portlet package were

developed and implemented on top of the existing OpenACS framework. We commenced

with a brief overview on this main software architecture and the dotLRN platform that the

system was to be developed upon as well as some historical considerations within this field

of development. This also encompassed a brief mention of some competitive analysis on

existing catalog software currently available. Following this we discussed the deep software

engineering requirements that the system had to include as well as the data model and user

interface design of both of the packages. Next we continued by looking even further into the

development of the browser system by discussing the implementation details of the catalog

importing as well as hierarchy display for the ODP data. We concluded by discussing the

User Interface details and each of its available functionalities as well as on overall

discussion on the results of the proposed study.

Overall it seems that the introduction of this catalog functionality into the dotLRN platform

allowed a number of benefits in accessing web based resources within an E-learning

community. The final results were successful in adhering to the original set goals for the

system in providing:

• A Mechanism allowing the addition of the ODP data into a PostgreSQL database.

• An OACS package that allows the browsing of this catalog’s hierarchy.

• A portlet for the dotLRN platform to allow community members to access catalog

resources via their E-learning portal.

Hence through this discussion and study it is clear that there is now a solution for allowing

students and staff to access and integrate internet resources into their everyday E-learning

portals in order to provide more convenient methods of online collaboration with such

powerful tools as the ODP catalog.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 86

References

[1] Calvo, R.A. and Peterson, D. H. (2002) OACS-A Framework For Web Applications [online],

Available: http://ausweb.scu.edu.au/aw02/papers/refereed/calvo/paper.html. [September 2003]

[2] dotLRN Home (2003) http://dotlrn.org/ [last accessed online September 2003]

[3] Calvo, R. A., (2003) The OpenACS E-learning infrastructure [online],

 Available: http://ausweb.scu.edu.au/aw03/papers/calvo2/paper.html [August 2003].

[4] Alatovic, Tarik, (2001) Portals Design Documentation [online],

 Available: http://eveander.com/arsdigita/doc/design/portals.html [August 2003]

[5] Adida, Ben, (2003) “Writing a dotLRN Package”[online],

 Available: http://dotlrn.collaboraid.net/dotlrn/doc/writing-a-dotlrn-package [August 2003]

[6] http://www.dmoz.org/about.html [last accessed online October 2003]

[7] Senga information Retrieval software (2002), www.senga.org [last accessed online

September 2003]

[8] To, Roger, (2002) A collaborative Bibliographic Catalog [October 2003]

Thesis Document - Available: University of Sydney

 [9] Lerner, M. Reuven, (2003) OpenACS Templates [online],

 Available: http://www.linuxjournal.com [September 2003]

[10] Lassila, Ora and Swick, Ralph (1999) RDF Model and Syntax Specification [online]

Available: http://www.w3.org/TR/REC-rdf-syntax/#intro [October 2003]

[11] Su, Pete and Quinn, Bryan, OpenACS 4.6.2 Packages [online]

Available: http://aufrecht.org/doc/packages.html [October 2003]

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 87

[12] dotLRN (2003) http://www.collaboraid.biz/products/dotlrn. [last accessed online

September 2003]

[13] OpenACS (2003) www.openACS.org [last accessed online October 2003]

[14] PostgreSQL (2003) www.postgresql.org [last accessed online October 2003]

[15] Habadera, Mitsunori, (2002) A collaborative Bibliographic Catalog [October 2003]

Thesis Document - Available: University of Sydney

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 88

�
�

�������!���

��	������

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 89

Some of the acronyms that have been referred to in this thesis document are:

Acronyms Definition

ACS ArsDigita Community System

AOL America Online

API Application Program Interface

APM ACS Package Manager

DB DataBase

DM Data Model

GB GigaByte

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

MIT Massachusetts Institute of Technology .

OACS Open Architecture Community System

ODP Open Directory Project

OO Object Oriented

OpenACS Open Architecture Community System

RDBMS Relational DataBase Management System

RDF Resource Description Framework

SQL Simple Query Language

TCL Tool Command Language

UI User Interface

URL Uniform Resource Locator

USYD University of Sydney (Australia)

WEG Web Enginnering Group (USYD)

WWW World Wide Web

XML eXtensible Markup Language

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 90

�

�

�������!���

��������	������

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 91

B1. Code File Hierarchy

The browser package hierarchy is listed below as the files are organised within the package:

Path File type Database support
browser.info package_spec
sql/
 postgresql/
 browser-create.sql data_model_create postgresql
 browser-drop.sql data_model_drop postgresql
 browserurl-functions-create.sql data_model postgresql
 browserurl-table-create.sql data_model postgresql
tcl/
 browser-procs.tcl tcl_procs
www/
 about.adp content_page
 add-to-portlet.adp content_page
 add-to-portlet.tcl content_page
 add-to-portlet.xql query_file
 contact.adp content_page
 css/
 styles.css content_page
 desc.adp content_page
 desc.tcl content_page
 desc.xql query_file
 doc/
 design.html documentation
 images/
 Thumbs.db content_page
 arrow.jpg content_page
 basebg1.jpg content_page
 basebg2.jpg content_page
 btn_about.jpg content_page
 btn_about_dn.jpg content_page
 btn_contact.jpg content_page
 btn_contact_dn.jpg content_page
 btn_home.jpg content_page
 btn_home_dn.jpg content_page
 btn_news.jpg content_page
 btn_news_dn.jpg content_page
 btn_products.jpg content_page
 btn_products_dn.jpg content_page
 btn_support.jpg content_page
 btn_support_dn.jpg content_page
 jscript.js content_page

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 92

 lizard2a.gif content_page
 mainpic1.jpg content_page
 navbasebg.jpg content_page
 navspacer.jpg content_page
 oacs2.jpg content_page
 oacs3.jpg content_page
 pointerphoto.jpg content_page
 snap1.jpg content_page
 snap2.jpg content_page
 spacer.gif content_page
 topbg.jpg content_page
 toplogo.jpg content_page
 topmidspace.jpg content_page
 topnavbg.jpg content_page
 index.adp content_page
 index.tcl content_page
 index.xql query_file
 master.adp content_page
 master.tcl content_page
 myurl.adp content_page
 myurl.tcl content_page
 myurl.xql query_file
 search.adp content_page
 search.tcl content_page
 search.xql query_file
 sub-cat.adp content_page
 sub-cat.tcl content_page
 sub-cat.xql query_file
 support.adp content_page
 url-delete.adp content_page
 url-delete.tcl content_page
 url-delete.xql query_file
 url-edit.adp content_page
 url-edit.tcl content_page
 url-edit.xql query_file

�
�
�
�
�

�

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 93

The dotlrn-portlet package hierarchy is listed below as the files are organised within the

package:

Path File type Database support
dotlrn-browser.info package_spec
sql/
 postgresql/
 dotlrn-browser-applet-create.sql data_model postgresql
 dotlrn-browser-applet-drop.sql data_model postgresql
 dotlrn-browser-create.sql data_model_create postgresql
 dotlrn-browser-drop.sql data_model_drop postgresql
 dotlrn-browser-portlet-create.sql data_model postgresql
 dotlrn-browser-portlet-drop.sql data_model postgresql
tcl/
 dotlrn-browser-applet-procs.tcl tcl_procs
 dotlrn-browser-applet-procs.xql query_file
 dotlrn-browser-portlet-procs.tcl tcl_procs
 dotlrn-browser-procs-postgresql.xql query_file postgresql
www/
 css/
 styles.css content_page
 doc/
 design.html documentation
 dotlrn-browser-admin-portlet.adp content_page
 dotlrn-browser-admin-portlet.tcl content_page
 dotlrn-browser-portlet.adp content_page
 dotlrn-browser-portlet.tcl content_page
 dotlrn-browser-portlet.xql query_file
 master.adp content_page
 master.tcl content_page

�

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 94

B2. Installation Instructions

Versions to run browser system on :

- dotlrn 1.0
- Postgresql 7.3.4 (as it has the ltree module needed for the Database) MUST HAVE

ENABLED UNICODE SUPPORT FOR POSTGRESQL by adding the flags:
 --enable-locale and --enable-multibyte.

- AOL server 3.3.1
- Red Hat 8.0
- Perl – version 5.005_03 or later (default version with RH 8)

Extra needed software / files

- structurerdf.u8 file included on CD
- xmlclean script , included on CD
- content2db script , included on CD
- structure2db script, included on CD
- DBI module for Perl – for your database server
- DBD module for Perl – for your database server
- Standard iconv utility – usually included in all OS

Requirements

- must have installed the browser package , since this installs the data structure for the Data
- also must have installed the dotLRN-browser applet , if the portlet is to be used

Instructions after the installations of the above have been made

1. Install Parser::module for perl (Should be available with Red Hat 8 +)
2. Install the DBI module for perl – follow instructions in README file - you will need root
permission for this
3. Install the DBD module for perl – follow instructions in README file -you will need root
permission for this

4. Copy all the files on the CD to a directory , then CD into that directory:

5. ODP exports i.e. RDF files are known to be non-standard files, they contain many errors
such as UTF-8 encoding errors, XML errors and RDF errors. Hence before we insert the RDF
data into the data base we must clean up these errors, by using the iconv utility. The first time
we use this will be on the structurerdf.u8 file, to clean up the file for the structure:

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 95

a. clean up all the invalid UTF-8 sequences :

COMMAND :
 iconv -c -f UTF-8 -t UTF-8 structurerdf.u8 > valid-structure.u8

Please note : This will take a few minutes depending on the machine being used.

• now we have directed the clean output of the RDF to the valid-structure.u8 file

 b. clean up all the invalid XML characters in the file:

 COMMAND:
 Cat valid-structure.u8 | ./xmlclean.pl > valid-structure.clean
c. You can now remove unnecessary files with the following commands

 COMMANDS:
 rm structurerdf.u8 valid-structure.u8

6.a. Must edit the structure2db.pl to log into the current OACS/dotLRN Database.

 COMMANDS:
 Gedit structure2db.pl
 - now scroll down to the comment “connect to database:”

- change “service0” string to the name of your database

- also do the same for the password change “password” to password of the database owner ,
if no password exists leave it as “password”

b. save the file structure2db.pl and exit the editor
c. run the structure2db.pl script

COMMAND: ./ structure2db.pl
Note : it should start printing like the text below :

 Loading structure records:
 Record: 1000
 Record: 2000
 Record: 3000
 .
 .
 .
 .
 Record: 568000
 568585 loaded (if a newer structure RDF is used other than the
given one on the CD there may be more records than this)

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 96

7. Repeat the process for the content.rdf.u8 file

a. clean up all the invalid UTF-8 sequences :

COMMAND :
 iconv -c -f UTF-8 -t UTF-8 content.rdf.u8 > valid-content.u8

Please note : This will take a few minutes depending on the machine being used.

• now we have directed the clean output of the RDF to the valid-content.u8 file

b. clean up all the invalid XML characters in the file:

 COMMAND:
 Cat valid-content.u8 | ./xmlclean.pl > valid-content.clean

Please note : This will take up to a couple of hours depending on the machine being
used.

c. You can now remove unnecessary files with the following commands

 COMMANDS:
 rm content.rdf.u8 valid-content.u8

d. Must edit the content2db.pl to log into the current OACS/dotLRN Database.

 COMMANDS:
 Gedit content2db.pl
 - now scroll down to the comment “connect to database:”

- change “service0” string to the name of your database

- also do the same for the password change “password” to password of the database owner ,
if no password exists leave it as “password”

e. save the file content2db.pl and exit the editor
f. run the content2db.pl script

COMMAND: ./ content2db.pl
Note : it should start printing like the text below :

 Loading structure records:
 Record: 1000
 Record: 2000
 Record: 3000
 .
 .

g. After this is completed , the ODP should be available in the database.

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 97

�

�

�������!���

����	����������

Thesis: OpenACS Catalog Portlet

Author: Abbas Chebli 0011561 98

C1. CD Contents

Attached to this thesis document is a CD containing a number of useful resources to help

the understanding of the browser system as well as the installing and configuration of the

ODP catalog into PostgreSQL. It contains

Software – All software versions used in the development and installation of the browser

system that are recommended for this version of the browser system

.

• DotLRN 1.0 – dotLRN-1.0.tar

• AOLServer 3.3 – aolserver3.3oacs1.tar

• PostgreSQL 7.3.4 – postgresql-7.3.4.tar

Import – In this directory is contained the perl modules needed to import the ODP into

postgresql, as well the scripts that will perform this process. Please note the structure.rdf.u8

file is included on this CD but the content.rdf.u8 is not due to its size, this will have to be

downloaded from dmoz.org.

• DBI perl module - DBI-1.38.tar

• DBD perl module - DBD-Pg-1.22.tar

• xmlclean.pl – script to clean the RDF files

• content2db.pl script – script to import the ODP content into PG

• structure2db.pl script – script to import the content into PG

• structurerdf.u8 – ODP data hierarchy structure

Browser System Code - The browser system packages.

• browser package

• dotLRN-browser package

